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Precis

OBJECTs

To survey, in as nontechnical a manner as possible, the
extensive literature on discriminatory analysis and re-
lated topics*

SUtNARYs

The literature on discriminatory analysis and related
topics is reviewed. A bibliography of over 250 refer-
ences is appended. Mathematical research projects are
suggested in relation to the medical and psychological
problems of Air Force selection and classification pro-
grams.
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CHAPTER I

Introduction.

The purpose of the present monograph is to survey, in as

nontechnical a manner as possible, the extensive literature

on discriminatory analysis and related topics which is listed

in the bibliography (pages 89 - ll5). It seems desirable to

indicate briefly the point of view from which the topics were

selected and discussed.

In a narrow sense discriminatory analysis may be identi-

fied with the finite multiple classification problem: an

individual I is known to belong to just one of k speci-

fied categories or populations, and must be classified into

one of these populations on the basis of whatever evidence is

available about I and about the populations. The classifi-

cation problem becomes statistical when we further specify

that the available evidence about I consists of observed

values of certain random variables, these random variables

having different probability distributions in the different

populations.

It did not seem reasonable, however, to place so strict

an interpretation on the subject in preparing the present

survey. The techniques employed in discriminatory analysis

are intimately related to certain techniques, especially the



coefficient of racial likeness and the generalized distance,

which were introduced earlier, and it was not possible to

convey an adequate idea of the development of discriminatory

techniques without first discussing its predecessors. We

have therefore devoted Chapter II to the coefficient of

racial likeness and Chapter III to the generalized distance.

Extensive bibliographal listings are also given for these

topics.

Until recently discriminatory analysis has been es-

sentially no more than the application of the linear dis-

criminant function. Correspondingly, a central place has

been given to this topic. The discriminant function is

introduced in Chapter V; in Chapter VI there is presented in

tabular form a collection of its applicators to many scien-

tific fields; And in Chapter VII some of its modifications

and extensions are discussed.

The entire topic of multivariate analysis may be regard-

ed as an extension of the discriminant function, but it did

not seem reasonable to include in the present work a dis-

cussion of multivariate analysis. We have restricted our-

selves to a brief indication of the connections between the

two topics, given mostly in Chapters IV and VII.

In his invited address at the meeting of the Institute

of Mathematical Statistics in Berkeley, California, June 16,

1949, Professor M. A. Girshick pointed out that the develop-

ment of discriminatory analysis reflects the same broad phases

as does the general history of statistical inference. We may
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distinguish a Pearsonian stage, connected with the coef-

ficient of racial likeness, followed by a Fisherian stage,

connected with the linear discriminant function. Girshick

further notes a Neyman-Pearson stage and a contemporary

Waldian stage, which are discussed here in Chapters VIII

and IX, respectively. These stages are marked by the intro-

duction of the notions of probability of misclassification,

and of risk.

As is indicated by the fact that the bibliography con-

tains over 250 listings, it was impossible to give a thorough

discussion to all of the literature. In making the selection

of the papers to be presented at length, two principles have

been followed. We have tried to present in some detail the

ideas which marked important conceptual advances, rather than

those which correspond to technical elaborations. And, other

things being equal, we have preferred the simpler topics to

the more complicated ones. This preference was of course

dictated by the desire to have the monograph accessible to

persons of limited training in mathematical statistics.

The bibliography was compiled by scanning recent volumes

of the main statistical journals, by consulting bibliographic

reference works such as Mathematical Reviews, Educational

Index, Statistical Methodology Index, Psychological Abstracts,

and Biological Abstracts, and by tracing back the bibliograph-

ic references in the papers themselves. Much of this work

was done by the assistants, and I have particularly to thank

Mr. Charles Kraft for doing most of the final checking for
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accuracy. We tried to make the bibliography as complete as

possible, and would appreciate.having omissions brought to

our attention. References in the text to the bibliography

are made by giving author's name and date. A list of periodi-

cals is given at the end of the report.

In conclusion I should like to thank my friends and

colleagues, Dr. Evelyn Fix and Professor E. L. Lehmann, who

have gone through much of the manuscript and have made many

constructive changes. Our thanks are also due to the vari-

ous scholars who have made available to us their unpublished

manuscripts; in particular we thank T. W. Anderson, Z. W.

Birnbaum, G. W. Brown, D. G. Chapman, C. L. Chiang, and M.

A. Girshick.
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CHAPTER II

The Coefficient of Racial Likeness.

Karl Pearson and his colleagues at University College,

London, were deeply interested in the possibility that human

crania might be used in the study of anthropology and evo-

lution. They formed considerable collections of skulls, which

were carefully measured and studied. Frequently the samples

were quite small, so that it frequently became desirable to

pool closely related samples. Hence there was need for a

test of the significance of observed differences between the

samples, which could be applied to determine whether such

pooling would be appropriate. There were available tests for

the significance of difference of two normal samples, in which

each observation consisted of a single measurement, but in

craniometric work it was usual to measure as many as 50 quanti-

ties on each skull. As Pearson saw, there was need for a

test which would compensate for the smallness of the samples

by the large numnber of quantities which might be measured on

each individual.

As Pearson wrote later, he tackled this problem in 1919.

The solution which he obtained was published in 1921, in a

paper written by Miss M. L. Tildesley. Miss Tildesley wanted

to know whether she should combine two small samples of
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Burmese skulls so that the resulting larger sample could be

used to give a more reliable estimate of Burmese cranial

characteristics. To answer this question, she used the coef-

ficient of racial likeness (which we shall hereafter denote

by CRL). The CRL was given a number of slightly differing

definitions but in a simple si~tuation it might be defined as

follows.

Suppose we have two samples, say a sample S1 of n

individuals (skulls), and a sample S2  of n 2  individuals.

Suppose that on each individual of each sample we measure p

traits. Denote the value of the ith trait measured on the

jth individual of the ath sample by xaij* From these measure-

ments we compute for each sample and each trait the mean and

standard deviation:

-- i n. 1 _ xij.xL
LI a xai j s, ns ZiXz

j= J=l

i=1, 2 ,...,p; a=l,2

Pearson then would define the CRL to be the quantity

1 pi 1
(2) I i 2 j -il +__ s 21_

n, n2

The motivation of Pearson's definition is approximately

as follows. If the two samples do come from the same popu-

lation, the expected value of x li - x2  is 0; and in any

case an estimate of the varianco of Xli - 21 is given by
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2 2

s + S21 Since biological measurements are often approxi-

nI n2

mately normally distributed, and since arithmetic means tend

to be nearly normal even if the averaged quantities are not

normal, we may think of

Xli - 21 
1

"1 2

as being, approximately, normal random variables of unit vari-

ance, whose expected values are 0 if the two samples come

from the same population, but whose expectations would usually

differ from 0 otherwise. Now if the p random variables

were independent, a reasonable test of the hypothesis that

the samples come from the same population would be provided

by examining the sum of their squares:

(3) Xli " 21)

i=l s~i_+s
21

The quantity (3) would have approximately a chi-square dis-

tribution of p degrees of freedom, central if the hypothesis

were true, non-central otherwise. From the point of view of

modern theory, the use of the statistic (3) can be justified

by, for example, the likelihood ratio principle. And since

the CRL is a linear function of (3) the use of the CRL as a

statistic for testing the hypothesis of homogeneity still

seems reasonable, provided that the various assumptions men-

tioned above hold.
7



Pearson did not suggest that the chi-square distribution

be used with the CRL, however. For most of the applications

in cranionietry, p would be large enough so that the chi-

square distribution could be replaced by the normal with

negligible loss of accuracy. Pearson gave the first two

moments of the CRL (assuming the hypothesis true) and sug-

gested that these be used in referring a computed CRL to a

normal table. (It may be noted that the formula for the

second moment given in Miss Tildesley's paper is wrong by a

factor of ). This mistake was repeated in a number of sub-

sequent papers, and only corrected in 1926.)

Pearson was well aware that the theoretical justifi-

cation for his coefficient rested on the assumption of the

independence of the traits measured. The correlation of

cranial traits had been the subject of much study by his

school. Miss Tildesley wrote, "... we do know quite enough

to assert that the correlation is never very high between

cranial characters which do not have any portion in common,

and w1rich are not right and left measurements of homologous

characters. It is indeed often wholly negligible." As

Pearson pointed out (1926), it is easy in theory to allow

for dependence of the traits, but when p. is as large as

20 the resulting computations are overwhelming. H! recom-

mended that great attention be paid to the selection of traits

little correlated with each other within the sampled popu-

lations.

From the point of view of the development of discriminatory



analysis it is of great interest to observe that from its in-

ception, the CRL was employed for two rather different pur-

poses. Properly speaking, the CRL is designed as a test

statistic, large values of which are supposed to reflect high

improbability that the two samples are drawn from the same

population. In applying the test, one selects a critical

value, say c, and rejects the hypothesis of homogeneity if

the CRL exceeds c. The value of c is selected according

to the level of significance which we desire our test to

have; by increasing the value of c we decrease the proba-

bility of rejecting the hypothesis if it is true.

Now suppose 1T0 , I', and TI2 are three populations from
1 T2

each of which we have a sample, say So, Sl, and S2 re-

spectively. Suppose we compute the CRL between S0  and S1

and find it to have the value Cl, and correspondingly find

the CRL between S and S2 to have the value C 2. Suppose

further that C1 > C2. We could then select a critical value

c which lies between the two CRL's: C > c > C At the

significance level corresponding to c, we should accept the

hypothesis that IT and 1T are identical and reject the hy-
0 2

pothesis that T and Tl are identical. An examination of0 1

this situation makes it easy to understand why there is a

temptation to say, in such cases, that " T0 is nearer to

I2 than it is to T". If we succumb to this temptation,
2 1

we shall be using the CRL not as a test statistic, but as a

measure of some (as yet undefined) concept of relative degree

9



of resemblance or divergence in the totality of populations

under study.

It should be clear that the temptation to use a test sta-

tistic as a metric is not confined to the CRL. If we have any

statistic for testing whether two samples are drawn from the

same population, the statistic being so constructed that large

values are indicative of difference in the populations sampled,

then it is rather natural to interpret larger significant

values as indicative of greater differences.

For example, Miss Tildesley computes the CRL between

French and English skulls (the Value being 2 4.5), and also

between Egyptian and Negro skulls (the value being 27.3), and

then states "French and English are shown to be almost as far

apart racially as Egyptians and Negroes." Both values of CRL

are highly significant.

In the years following 1921, Pearsonts school carried

out many craniometric researches in which the CRL was the

principle statistical tool. The chief contributor to this

work was G. M. Morant. Morant commented in 1923 on the question

of the use of the CRL as a measure of degree of resemblance,

in the following terms (Morant 1923, p. 205):

11the value of [(2)] computed from a number of mean

characters of two races is the Coefficient of Racial

Likeness between them and it is thus a measure of

the probability of the two being random samples

from the same population. It is not a true measure

of absolute divergence, and must not for a moment

10



be considered as such, but nevertheless we shall

speak of it, for convenience, as if it were an ab-

solute measure of racial affinity."

In spite of this warning, however, Morant and others continued

to use the CRL as a metric. The reason for this inconsistency

was doubtless the fact that the craniometrists had need for

such a metric, and the CRL was the only tool available to

them for such a purpose.

Morant was by no means an uncritical user of Pearson's

CRL. In 1924 he had this to say on the subject (Morant 19 2 4,

p. 12):

"Given two random samples each of ten individuals

drawn from the same homogeneous population, the Coef-

ficient of Racial Likeness deduced from the mean

characters of the two samples will not differ sig-

nificantly from zero, and if two samples each of a

hundred individuals are drawn from the same popu-

lation then their Coefficient will also be of the

same order. But if two random samples each of ten

individuals are drawn from two different populations

and then two samples each of a hundred individuals

are drawn from the same differing populations it

will be found that the Coefficient between the first

pair will be very distinctly less than that between

the two samples of a hundred individuals each ...

It is for this reason that Coefficients of Racial

Likeness may not be compared directly ... "



The reader may have been wondering what the CRL, whether

viewed as a test or as a measure, has to do with discrimina-

tory analysis. There is an obvious way in which a measure of

divergence can be used for discrimination purposes. If we

can measure the divergence of an individual (or a sample)

from each of several populations, to one of which it is as-

sumed that the individual (or sample) belongs, then it seems

reasonable to assign the individual (sample) to that popu-

lation from which the measured divergence is least. In a

somewhat similar way a test of significance of difference can

be used as a discriminator: we assign the individual to that

population from which it is significantly different at the

largest level of significance.

In 1926 Morant had occasion to deal with a discrimi-

nation question in craniometry (Morant 1926b). An ancient

skull was discovered in 1888 in the commune of Chancelade in

France. It was examined by an anatomist, Dr. Testut, who

wrote, "Parmi les races actuelles, celle qui me para&t presenter
avec

la-plus grande analogie~l'homme de Chancelade est celle des

Esquimaux." Most anthropologists agreed with Testut's con-

clusion, but some did not. In 1924 Sir Arthur Keith wrote,

"...the Chancelade skull, while possesping a few superficial

resemblances to Eskimo skulls, is in its essential character

just as European as the people of England and France today,"
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(quotations from Morant's paper). We have here a clear problem

of discrimination and Morant approached this problem biometri-

cally.

Before seeing what Morant did, let us examine the CRL

more closely as a possible tool for discrimination. In practice,

the CRL is usually employed in a form somewhat different from

(2). Let Yai denote the standard deviation of the ith trait

in the ath population. It is usually assumed that a = a

in fact, in craniometry it is customary to replace both 6li

and. 6 21 by a value 6i obtalned from a large standard sample,

it being felt that the variation in standarddeviation from one

race to another is of less importance than the sampling error

of the usual small samples,, With the assumption 6 li1 212i=1i,

(2) simplifies to

1 n1n2 (Ili "2i) 2
(4) • • nl + n2 •1

1 2

Now if we wish to compare a single individual with each of

several different races, we would compute (4) between a first

sample, consisting of the single individual, and a second

sample, consisting in turn of each of the races. Thus n

would be 1, X would be the value, xl, of the ith trait
li l

for the individual, and (4) would become

p 2
n 2 x l , ' 2 i )1 i=1 n2 + 61

Finally, suppose that we have a large sample from the race;

13



then approximates to 1 and x will tend in proba-
n2 + 21

bility to the population mean value, say •i Thus, the CRL

simplifies to

p

(6) 
(Xl i -i 1 .

We might then reasonably compute the value of (6), using the

mean values for each race in turn, and assign the indi-

vidual to that race for which (6) is smallest.

Now let us consider what Morant actually did. To compare

the Chancelade skull with male Eskimo skulls, he obtained the

values of and from large samples of modern male

Eskimo skulls, and computed, for P = 55 traits, the values

of the quantities
x

(7) l i

If the Chancelade skull were Eskimo, we should have here ob-

served values of 55 (supposedly independent) normal deviates,

and might use these values to test the hypothesis that the

Chancelade skull is Eskimo. The corresponding test might be

made to determine whether the Chancelade skull resembles, say,

modern English skulls. Morant actually makes two sets of such

tests--by computing both the sample mean and standard deviation

of the quantities (7) and comparing them with their "theo-

retical" values. Morant t s conclusion was: "...from the

evidence afforded by the skull and mandible, we may accept as

14



a reasonable working hypothesis the statement that the

Chancelade individual was distinctly closer to the Eskino than

to the modern English."

Since the standard deviation of the quantities (7) is

a function of the form (6) assumed by the CRL in this situ-

ation, it turns out that one of the two tests made by Morant

amounts to the use of the CRL as a discriminator. However,

it is rather curious that the CRL is not explicitly mention-

ed by Morant; in fact, this is about the only craniometric

work which Morant did in this period without mentioning the

CRL. It is a rather curious historical fact that the con-

nection of the CRL with discrimination did not come in the

direct way just discussed, but only in the roundabout fashion

outlined in the next chapters.

In 10,26 Pearson published the first considerable theo-

retical work on the CRL. In this paper, Pearson deals with

the independence assumption underlying his coefficient. In

fact, he suggests an alternative form of the coefficient,

which is suitable if the traits are not nearly independent,

and if there are only a few of them. Let rast denote the

sample correlation between the sth and t-th traits in Sa-

Just as it is convenient to assume l= -21 = a i it is

convenient to assume r = r = r Let
1st 2st st

nI n 2  Xli x 2 i
(8) Yi = n1  n2 ni

15



Let R denote the correlation matrix of y1 9 Y2''''' Yp:

R = 1 rlp

r 2 1  1 '.. r 2 p

r r ... 1
p1 p2

and let Rst denote the cofactor of R at the ath row and

t-th column. Then it is known that

p P

s=l t=l

will, if the samples ate drawn from the same population and

the matrix R is exact, have a chi-square distribution with

p degrees of freedom. The quantity (10) may be considered

to be a generalization of the original CRL (L), to which it

reduces if the traits are independent.

Pearson points out the great labor involved in comput-

ing (10) when p is as large as, say, 20. He concludes that

'for the statistician, as for the statesman, the ideally best

is not always the wisest course.-

In 1928 Morant returned to the difficulty he had pointed

out in 1924, that arises when one wishes to use the CRL as a

measure of dispersion in cases in which the sample sizes differ

widely. He suggested a corrective factor to be applied to re-

duce the CRL to a standard sample size. Morantts criticism

and suggested correction are very similar to those offered at

16



about the same time by P. C. Mahalanobis, and we shall defer

discussion till the next section. Finally in 1928 Pearson

gave way before the arguments of Morant and Mahalanobis (K.

Pearson 1928b), and sanctioned a corrective factor which in

essence reduces the CRL to the D2 statistic discussed in the

next section.

After 1928 numerous papers applying the CRL to cranio-

metric work continued to appear in Biometrika. Further theo-

retical work shifted into other lines, however. The D2

statistic, introduced originally as a modification of the

CRL, was studied extensively by the Indian school, with a

steady development of the relevant distribution theory cul-

minating in a paper by Bose and Roy in 1938. And in the West,

work of Fisher and Hotelling on different but related problems

prepared the way for the introduction of the linear dis-

criminant function in 1935. In an important paper of Fisher

in 1938, these various lines of development were brought to-

gether. We shall trace the important features of these re-

searches in the next three chapters.

In the bibliography there is an extensive listing of

papers pertaining to the CRL. Among these are Batrawi and

Morant (1947), von Bonin (1931a, 1931b, 1936), von Bonin and

Morant (1938), Cleaver (1937), Collett (1933), Dingwall and

Young (1933), Goodman and Morant (1940), Harrower (1928),

Hasluck and Morant (1929), Hooke (1926), Hooke and Morant

(1926), Kitson (1931), Kitson and Morant (1933), Layard and

Young (1935), Little (1943), Martin (1936), Morant (1923,
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1924, 1925, 1926a, 192 6 c, 1927a, 1927b, 1928a, 1928b, 1929a,

1929b, 1931, 1935, 1936a, 1936b, 1937, 1939a, 1939b), K.

Pearson (1926, 1928a, 1928b), Reid and Morant (1928), Risdon

(1939),Stoessiger (1927), Stoessiger and Morant (1932),

KTildesley (1921), Woo (1930), Woo and Morant (1932), and

Young (1931). The bulk of these papers contain only routine

applications of the CRL to craniology, and are devoid of theo.

retical interest. Of greater interest are certain papers

which approach the CRL in a critical spirit. We have already

mentioned some of the comments of Morant, and those of

Mahalanobis will be further discussed in the next chapter.

In this-regard one may mention Pearl and Miner (1935),

Fisher (1936a), and Seltzer (1937).

Certain other writers proposed coefficients similar to

the CRL, independently of and sometimes earlier than Pearson.

Joyce (1912) credits to H. E. Soper a "differential index"

which resembles the CRL except that the terms are not squared;

this reduces the statistical efficiency. A still more primi-

tive coefficient is that of Aebly (1926), in which differý.

ences are not compared with their variabilities, but are

summed directly.



CHAPTER III

The Generalized Distance.
9

In 1923-1925, P. C. Mahalanobis was engaged in an anthro-

pometric study of the Anglo-Indians of Calcutta, and of their

,relations to other racial groups. He at first employed the

then recently devised CRL as a principal statistical tool, but

(as had been Morant) was disturbed by the influence of sample

size on the CRL when it was used as a measure of the diver-

gence of two populations. On what appear to have been rather

intuitive grounds, Mahalanobis decided to drop the coefficient

1 2 and obtained in this way a statistic
n + n
1 2

PS2 x x

This statistic, called at first the 'fcaste-distance'? and later

the 'generalized distancel, was used by Mahalanobis in the

presidential address delivered to the Anthropological Section

of the Indian Science Congress in 1925 (Mahalanobis 1927),

which was published in 1929.

The contrast between the CRL and D2 is made clear if we

consider what happens when the sample sizes n, and n 2  are

increased. If there is in fact no difference between the

:19



populations with regard to the means of the traits, the distri-

bution of CRL will remain unchanged; the increase of nl n2
n, + n 2

will serve precisely to counterbalance the tendency of

x-li " x 2 i to approach 0. On the other hand, if there is an

actual difference in the population means, say J + 0, then

OE li 121)2 will tend in probability to the positive quanti-

ty j 2 as the sample sizes are increased. Consequently the
i

CRL will tend in probability to co. It is thus, as Morant

saw in 1924, unreasonable to use the CRL as a measure of diver-

gence unless the sample sizes are always the same. This diffi-

culty does not arise in the case of D2 . If li and ý2i

denote the population means, then as the sample sizes are in-

creased, D2 tends in probability to

(2) A2 =1 2 x ~2i)PE

We may therefore view the sample quantity D2 as a point esti-

matt of the corresponding population quantity &2 , and

state that the estimate is consistent (i.e., tends in proba-

bility to the quantity being estimated as the sample sizes are

increased).

Mahalanobis has stated (1949, p. 237) that he presented

the foregoing argument to Karl Pearson in 1927, and that

Pearson refused to admit its validity. In any case, Mahalanobis

2began to use his D statistic, and in 1928 Morant published a

very similar argu•ment, together with numerical data showing

20



the tendency of the CRL to increase with the sample size.

Morant suggested that CRL t s based on widely different sample

sizes could be made comparable by corrective factors. Pearson

in the same year endorsed Morant's suggestion, whose effect

2is in practice to make the CRL very similar to D

From 1930 to 1938 the Indian school devoted much effort

to developing the distribution theory of the D2 statistic.

In reviewing the history of this research, it willbe con-

venient to introduce some terminology to describe the various

assumptions under which one may study the distribution of D2

and related statistics.

The reader may have been. disturbed by the way in which

Pearson and his followers employ for the standard deviations

a I quantities obtained from extraneous sources, and ignore

the sampling variability of these estimates. Practically,

if the samples are large, the variability of sample estimates

of the variance will not make a major contribution to the

2distribution of the CIRL or of D In a sense, the values of

the variances are of secondary importance to the values of

the mean differences. But as the theory of statistics de-

velops refinement, and its methods are applied to smaller

samples, it becomes desirable to take into account the sampl-

ing fluctuation of di" It was the great contribution of

Student (1908) to recognize that the ratio of the mean devi-

ation of a normal sample to the estimate of the standard

deviation based on the sample, did not have a normal distri-

bution. It seems reasonable to distinguish, therefore, be-,
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tween the "classical" and "Studentized" versions of the

distribution theory problem. If it is considered that the

quantities 6, and rst which are employed represent true

population values, we shall say that the problem is being

treated in its "classical" form; while if account is taken

of the fact that these quantities are estimated from the

samples, we shall refer to the problem as "Studentized."

The problem may be further characterized by either mak-

ing or not making the assumption that the traits are inde-

pendent. As with the CRL, the D2 statistic was at first con-

sidered only in the case that the quantities Xli - x-21

i = 1, 2,..., p, are independently distributed. By 1935,

however, the obvious extension involving the addition of

correlational terms had been made: the corresponding ex-

tension for the CRL was made by Pearson in 1926. The de-

pendent version of D2 , using the notation of (10), Chapter

II, is given by

(3) Xls - x2s xt - x2t
1 E E Rst 62t

s=l tt=

A third categorization of the distribution problem

follows by observing that the distribution of 2 may be

sought either in case the populations sampled are the same

(which we shall refer to as the central case), or in case

the populations differ for at least one trait (which we shall

refer to as the noncentral case). In summary, we may seek
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the distribution of D2 (or of the CRL) for the classical or

Studentized, for the independent or dependent, and for the

central or noncentral, cases. There are thus in total eight

possible situations.

In the terminology just introduced, we may say that

Pearson in 1921 gave an approximate distribution for the

central, classical, independent CRL, and that in 1926 he

gave the exact distribution for the central and classical

CRL, which turned out to be the same (chi-square) regardless

of independence.

In the same terninoloey, P. C. Mahalanobis considered

the independent, classical case, both central and noncentral,

in 1930. This was the first considerable paper on the theory

of the D2 statistic. By a method thought to be approximate

(series expansion), Mahalanobis obtained the first four moments

of D2 . From these, and from large scale sampling experiments,

he was able to state: "We conclude therefore that the distri-

bution of D2 will conform generally to Type I of the Pearson-

ian family#, except in the case of two groups (or samples)

taken from the same population, when the distribution will

pass into the Type III curve."

In the mid-1930's, the distribution problem of D2 was

attacked by R. C. Bose. In 1935 Mahalanobis had published

the dependent form of D2 mentipned above, and Bose first

considered the classical D2, in both the independent and de-

pendent cases, both centrally and norcentrally. He was able
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to obtain the exact distribution, and hence the moments. It

was found that the results of Mahalanobis were exact, and were

correct without the independence assumption.

R. C. Bose continued to work on the problem, trying to

remove the assumption that the covariance matrix is known.

In 1936 Mahalanobis defined explicitly the "Studbntized" form

of D2 , and reported that Bose had found the first four moments

of D2 in the noncentral Studentized case. Finally, in January,

1938, Bose and S. N. Roy were able to report to the first ses-

sion of the Indian Statistical Congress that they had succeed-

ed in solving the complete problem: they had found the distri-

bution of D2 in the Studentized case, whether central or non-

central, whether independent or correlated.

The chairman of the meeting was R. A. Fisher, and at the

end of the paper of Bose and Roy, Fisher rose to point out

that he had given (however, in connection with a quite differ-

ent statistical problem) the distribution which they had ob-

tained, in a paper published in 1928. It was also pointed out

that Hotelling in 1931 had obtained, also in another connection,

the Bose-Roy distribution for the central Studentized case. It

is reported that Fisher remarked "that he, and Professors

Hotellin. and Mahalanobis had been unwittingly treading the

same ground.l He was glad to avail himself of the present op-

portunity to clear up this point." In the same year (1938)

Fisher published in his journal a paper pointing out the close

connection between several independent lines of development.
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The Indian school has continued to develop the theory of

D2, usually without reference to parallel developments in the

West. Roy and Bose (1940) have modified the D2 statistic to

permit the covariance estimates to be based on several samples

while the mean differences are based on two. Bhattacharyya

and Narayan (1941) have investigated the 2 moments when the

population variances are unequal. A. Bhattacharyya (1946) has
. . 2

extended the D statistic to the measurement of divergence be-

tween multinomial distributions. P. K. Bose (1947a, 1947b,

1949) has developed recursion formulae with the aid of which

he has tabled percentage points of the central and noncentral

D2 distribution, in both the classical and Studentized cases.

Bose is apparently unaware of the relation of his distri-

butions to the chi-square and F distributions, and as a re-

sult seems in some cases to have duplicated existing tables.

The D2 statistic has recently been used as a major tool

in a very extensive anthropological investigation (Mahalanobis,

Majumdar, and Rao), which 'comprises Parts 2 and 3 of Volume 9

of S~nkhya. The paper has several appendices in which various

theoretical points are discussed.
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CHAPTER IV

Beginnings of Multivariate Analysis.

The coefficient of racial likeness and the generalized

distance share a feature which serves to distinguish them from

much of the preceding work in statistics. Both of these tech-

niques represent attempts to deal with inference problems in

which the data consists of several correlated (normal) measure-

ments, say XI, X2 ,''', Xp, made on each individual or experi-

ment considered. These statistics are therefore precursors

of the theory of multivariate (normal) analysis, a prominent

example of which is the linear discriminant function. Before

discussing the linear discriminant function it will be useful

to describe briefly some developmentsof multivariate analysis,

most of which occurred between 1928 and 1938.

Beginning with the publication of Student's revolution-

ary paper in 1908, the English school of statisticians have

devoted much effort to obtaining analytical expressions for

the distributions of commonly used statistics based on normal

samples. Previously, in 1900, Karl Pearson had obtained the

chi-square distribution as an approximate distribution for a

test of goodness of fit. In Student's 1908 paper, the chi-

square distribution was offered as the distribution of the

sample variance of a normal sample, and a distribution
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equivalent to what is now known as the Student t-distribution

was given for the ratio of sample mean to sample standard devi-

ation. The next major advance occurred in 1915, when R. A.

Fisher, in finding the distribution of the correlation coef-

ficient computed from a bivariate normal sample, introduced

his method of geometrical argument in Euclidean hyperspace.

However much this method may fall short of present-day re-

quirements for rigor, in the hands of Fisher it was to pro-

duce in the next fifteen years revolutionary results. In

1921 Fisher applied his geometrical argument to find the

distribution of the intraclass correlation coefficient. The

distribution was labelled by Fisher with the letter z, a

symbol now famous in statistics. It subsequently developed

that the z-distribution had applications far more important

than those to the intraclass correlation coefficient; in

fact, it turned out to be the general distribution needed to

establish the level of significance of all analysis of vari-

ance tests. In a transformed version it is now widely known

as the F-distribution, having been so named by Snedecor in

Fisher's honor. In a series of papers from 1921, Fisher and

others gradually extended the statistical usefulness of the

F-distribution. Kolodziejczyk (1936) reduced its use to the

canonical form of tests of 2.liear hypotheses.

In 1928 Fisher published another paper which is basic

for the development of discriminatory analysis. Again em-

ploying the geometrical approachp he obtained the formula

for the distribution of the multiple correlation coefficient
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for normal variables. Although this was the immediate pur-

pose of his work, it is rather two other results, given more

or less as corollaries, which concern us. As a limiting form

of the multiple correlation coefficient distribution, Fisher

obtained a distribution, which he labelled (B); and as a vari-

ant form he obtained a third distribution labelled (C). The

(B) distribution is today known as the noncentral chi-square

distribution, and Fisher recognized that it "may be inter-

preted as the distribution of the sum of squares of n vari-

ates normally distributed with equal variance, but not with

zero means." The distribution (C) is what is now known as

the noncentral F-distribution, whose main present day use is

in determining the power of analysis of variance tests. Need-

less to say, Fisher did not put his (C) distribution to such

a use in 1928, but he did discuss one example (the distri-

bution of a correlation ratio) which serves as precursor to

the modern use.

It is interesting that the necessary analytic work had

been done by 1928 for finding all of the eight distributions

mentioned in connection with D2 in the preceding chapter. In

spite of this it took ten years for the statistical appli-

cations of these distributions to D to be realized; and when

they were, the realization came independently to two different

investigators.

In 1931 the central Studentized case was obtained by

Hotelling. Hotelling was. interested in extending the work of

Student to normal vectors. Student's t-distribution made it
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possible to test the hypothesis that the mean of a normal popu-

lation has a specified value, without assuming knowledge of

the value of the variance. Suppose that instead of a sample

from a univariate normal population we have a sample from a

multivariate normal population, and wish to test simultaneous-

ly hypotheses specifying the values of the population means

of all components of the normal vectors involved. Hotelling

had previously studied problems of this kind while partici-

pating in an investigation of the flow of particles in proto-

plasm (Baas-Becking, et al, 1928). To deal with this testing

problem, Hotelling suggested (apparently on intuitive grounds)

a test statistic, termed by him T 2 , and obtained its distri-

bution. The T2 statistic is a direct generalization of the

Student t , and is, except for a constant multiplier, identi-

cal with the correlated form of the CRL, given by Pearson in

1926, where the variances and correlations are not assumed

population values, but values estimated from the sample. The

distribution of T2 obtained by hotelling is simply the central

F-distribution first found by Fisher in 1921. Hotelling's

great contribution was to show that Fisher's distribution was

the appropriate one for a large class of testing problems, in-

cluding one of interest to us. T2 may be used to test the hy-

pothesis that two multivariate samples have been drawn from

the same normal population, assuming that the samples come

from normal populations having the same covariance matrix.

We proceed to describe this test in some detail.

Using the notation employed in Chapter IIp let xaik
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denote the value of the ith trait measured on the kth indi-

vidual from the ath sample, where a = 1, 2, k = 1, 2,---, n.9

and i = l, 2,..., p. Let -li and 721 be the arithmotic

means of the values of the ith trait in the first and second

samples, respectively, and define

xli x 21
d1 1 n =n + n 2 - 2,

n-, n2

n, n2

n ai = (Xlik 3li)(x2jk E2 0) + k (X21k.*21)(x2jk_2j)"

Now form the matrix A of the quantities aij:

A a al a1 2  a lp

a 2 1  a22 a2p

9e*e

apl ap2 a

Next invert the matrix A, to obtain the matrix A-1 with

ijelements a (It is this matrix inversion which begins to

present great practical difficulties if p is very large).

Hotellings statistic is then

P P
T 23 a ij d. a

i=1 J=1
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The hypothesis is rejected when T2  is too large, the critical

value for rejection being of course set according to the level

of significance desired. Hotelling proved that n+l-pT 2 has
n-p

the distribution of F with p and n+l-p degrees of free-

dom. The critical values may therefore be taken from the widely

available tables of percentage points of the F-distribution.

The test just discussed is pertinent to the discrimination

problem, since there is no point in worrying about which of

two populations an individual comes from unless the two popu-

lations are distinguishable. In the applications of the linear

discriminant function (Chapters V and VI) it is customary first

to employ the T2 test to establish the difference of the popu-

lations involved.

T2The choice by Hotelling of the T statistic seems to have

been based on intuition. It is interesting that this par-

ticular statistic may be obtained by applying a general princi-

ple, and that it has certain optimum properties. Neyman and

Pearson (1928) proposed the likelihood ratio criterion for ob-

taining statistical tests, and applied this criterion in 1930

and 1931 to obtain tests of the hypotheses that two or more

univariate normal samples arose from the same population.

Wilks (1932) obtained tests for a number of multivariate normal

hypotheses by application of the likelihood ratio principle.

In particular, Wilks found the likelihood ratio statistic for

testing the hypothesis that k p-variate samples came from

the same population, assuming that the samples arose from nor-

mal populations having the same (unknown) covariance matrix.
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When k = 2, Wilks? result reduces to Hotelli.ng~s

Wilks also found the likelihood r.atio test for the hy-

pothesis that several normal populations have the same co-

variance matrix. Since the assumption of equal covariance

matrices underlies the linear discriminant function, the latter

test is sometimes used as a preliminary to discrimination.

Bartlett (1937) proposed a modification of the constant factors

of the Wilks criterion and other modifications and applications

of these procedures have been considered extensively, for ex-

ample by Lawley (1938. 1939)., Bishop (1939), and Bishop and

Nair (1939)- Exact tables are available only for the case

p = 1 (Thompson and Merrington, 19431).

Work on T 2 is still continuing. Hsu (1938) investi-

gated the noncentral T2 -distribution, that is, the distri-

bution of the'T 2 test statistic in case the sampled populations

are in fact differento He found that the noncentral T2-

distribution coincides with the noncentral F-distribution in-

vestigated by Tang (1938) ard with the (C) distribution of

Fisher (1928). Because of thne identity of T2 aiid D2 , Hsu's

result is equivalent to that of Bose and Roy (1938) disnuss-

ed in Chapter ILI. In 1941, Simaikap following the lead of

Hsa (1941), demonstrated that T2 has the greatest power of any

test whose power depends only on the distance (A 2 ) between

the populations. Further optiumn properties of the T2 test

S.known, Wolfowitz (19Q'_9) showed t-hat the T2 test is the

most stringent similar test, and Hunt and Stein showed the

Ttest to be most strIngen.t and tl-; __niformly most powerful
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invariant test (see Lehmann, 1950). Further work has been

done by' Hotelling (1947) and Hsu (1945).

Two other papers by Hotelling (1933 and 1936) are also

related to the problem of discrimination. In the earlier

paper, he considered the problem of finding that rotation in

p-dimensional space such that in the new coordinate system

the coordinates would be independently distributed. These

new coordinate directions were termed by Hotelling the "princi-

pal components" of the given multivariate normal distribution.

It is interesting that the essential idea of Hotelling's work

was anticipated by Pearson (1901). Girshick (1936) showed

the equivalence of HIotelling's results with those obtainable

from the maximum likelihood principle. This topic is dis-

cussed in greater detail in Part II of the present monograph.

In 1936 Hotelling considered the relations which may ex-

ist between two correlated sets of random variables. He show-

ed how it was possible to rotate the sample space so that in

the new coordinates, the variables of each set are independent

among themselves, while between the sets there is dependence

only between certain corresponding pairs of variates. These

variates are called the "canonical variates" and the corre-

lations between them, the "canonical correlations." This work

is related to the linear discriminant function, since the

latter may be viewed as a canonical variate. Waugh (1942)

has illustrated the application of canonical variates to

economic data.
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CHAPTER V

The Linear Discriminant Function.

The first clear statement of the problem of discrimi-

nation, and the first proposed solution to that problem, were

given by R. A. Fisher in the middle of the 1930's. As was

the case with Karl Pearson's CRL, the ideas of Fisher first

appeared in print in papers by other people [Barnard (1935),

Martin (1936)], but it will be convenient to begin with a

discussion of Fisher's own first work on the subject. This

was contained in his paper, "The use of multiple measurements

in taxonomic problems," which appeared in Annals of Eugenics

in 1936.

In this paper, Fisher develops his theory largely by

means of working out a numerical example, and he is not al-

ways careful to state precisely the assumptions which underlie

his conclusions. In the exposition of his work which follows,

it has been necessary at various points to infer what is meant.

The general situation studied by Fisher is as follows.

There are, say, two populations, Ifl' and 1T From each

population we have available a sample, say n items from

IT and n2  items from T2" There is then presented a new

item, say I , which may have come from either IT or IT
1 2

The decision problem is to assign I to one of the two
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popula:>7-- The available Wor< d .nists of measure-

ments of, ,a• p qu.antios X ;. X ..... which are

mate'on I and on each of ith n., + n-. "amle items

We•< may.} coOnUvenIientlyi approach. Plohe&S•, 2c'oution. by con-

sidering first the special utivariate casaý p = 1. We then

have two univariate .am-"esA whose values may be represented.

b½- nuLmbers x., Zm X o he AMst sample.p by

X 21' -229,0'X for the second sample, and by x for the

idvidal :. it ses reasonable to assign I to that

group which it mori n?.early resembles as indicated by the

measurements. We might, for ex&mple, compute the arithmetic

means, say x! and X2 , of the two samples, and then see

to which of these m.ans x is closer. This is in fact the

proccdure which Fisher proposes. (It may be noted that Fisher's

rule implies that the two possible errors of classification are

treated symmetrically. This matter is diecussed at length in

Chapters VIII and

Fisher deals with the suitivariate yopobm by- reducing

it to the univariate problem just stated. This is accomplished

by replacings for each individ.ua.g the P m -srement; by a

single ... ".. .e... say Y. ,n ae of coure many differ

ent ways in w.i-ý p onn may be....binc.d . uto produce a

single qua.. ! Fisher consi s Only li . combinations$

y X } + +'
l 2 2 p p

We may here use any set of coeffi cient s 2 "
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and the major accomplishment of Fisher is to give a reason-

able solution to the problem of choosing the coefficients in

the most advantageous way.
.th

Let us denote the measured value of the j quantity on

the kth individual in the ith sample by xijk; i = 1,2,;

j = l,2,''',p; k = 1,2,...,ni; and denote the measured value

of the jth quantity on I by xj. Correspondingly, let

(1) Yik = x ilk + > 2 Xi2k + "'" + Np Xipk

and

(2) y = + +. + x .

The appropriatness of the choice of values for 1 2P

may be measured by the relative ease of classifying I through

use of the numbers y and Yik" If the two y samples are

widely spaced and each is tightly clustered about its own mean:

X XXXXX X 0 00000 0 0

it will in general be easier to make a correct decision about

I than if the y samples overlap:

X XOXO x OX o o

Fisher introduces a numerical measure of the ease of dis-

tinguishing between the two populations. This is the ratio:

difference of sample means

standard error within samples
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He then is able to suggest a reasonabl3 criterion for deter-

mining appropriate values of Xl' •2'' N "what linear

function of the ... measurements ... will maximize the ratio

of the difference between the [sample] means to the standard

deviatio'ns within fsarnplesj ?"

Mathematically, the problem is to maximize the ratio

(3) 1y 2 -  I

\I (y~lk 7l) 2 -(y~k - 2
2 1

where y = y and denotes summation over the

ith sample. We do not need to divide the denominatbr by the

constant nI + n 2 - 2, since constant factors do not affect

the maximization problem, and we may equally consider the

square of (3), since this is more convenient mathematically

and since the non-negative quantity will be maximized when its

square is maximized.

A little computation shows

P

-Yl 2 aajd
j=l

where d= . x is the difference in
j n 2 X2jk nl 1 ljk

sample means for the jth quantity, and

22 2

k 2 2kmj
j=l m=l



where S. is the pooled sum of products of deviations from

the sample means of traits j and m:

2
S jm - Ž 11 (xijk - iij)(ximk - 3im)

i =l

Here the quantities di and Sjm are computed from the

sample measurements.

Our problem then is to determine the values of the

for which 2

(4.) J~?~dl
P p
Z LNi -jm Sjm
j=l m=l

is maximized. Since (4) is not altered when all of the X's

are multiplied by the same quantity, there will be many equal-

ly good solutions, differing only by a constant factor. Ordi-

nary methods of the calculus give the solution. If we dif-

ferentiate (4) with respect to ) and set the derivativer

equal to 0, r l=,2,...,p, we obtain the equations

p pP P

m ) m jm - dr = • ý S , r=l,2opSP J = l J jr ' " r'P~*

J=p

Since we are only interested in solution up to proportion-

ality, we may ignore the factor m S m which
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is the same for all equations, and obtain as a solution the

roots A of the equations
J

S1 1  )t 1 + S 1 2  ^X2 + ... + Sip p d I

S2 1 )'l + S2 2  2+ "'" + S2p p d d 2

S Po ý + S p2 k 2 + ""+ S pp P d

We have thus in practice to solve a set of p simultaneous

linear equations; and as was pointed out by Karl Pearson in

1926 this places a practical limitation on the value of p.

Having obtained the appropriate A 's, we can now com-

pute the corresponding quantities 71 , 72 # and y, accord-

ing to (1) and (2). The problem becomes a univariate one,

and we can, for example, classify I into Il if and only

if y is closer to y1  than to Y2 "

It will be appropriate to give a numerical illustration,

and for historical reasons it seems desirable to use the il-

lustration employed by Fisher. Fisher considers the probl4m

of distinguishing between species of Iris plant on the basis

of four measurements made on each plant: sepal length, sepal

width, petal length and petal width. He has samples of 50

from each of 2 species, I. setosa and I. versicolor (a third

species, I. virginica, is included in making genetical appli-

cations). Fisher's example is unfortunate, in that a single
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one of these characteristics will serve to do all of the dis-

criminating that anyone would ever need. Thus, the 50 Iris

setosa plants have petal lengths running from lO to 1.9 cm

while the 50 Iris versicolor plants have petal lengths from

3.0 to 5.1 cm. Clearly no refined statistical technique is

needed to distinguish between such populationsl

An excellent illustration of the linear discriminant

function may however be obtained if we ignore the figures on

petal length and width, and pretend that only the figures on

sepal length and width are available. Figure 1 shows the

two samples, Iris setosa and versicolor, plotted for the sepal

measurements. An inspection of this diagram shows just where-

in the value of the linear discriminant function lies. If

we considered sepal length and sepal width separately (see

Figure 1) it would be quite difficult to make an accurate dis-

crimination because of the large degree of overlap of the two

samples. But if we compute the linear discriminant function,

the discrimination becomes very good.

The figures involved are the following, letting 'T1 be
1

Iris setosa and T2 be Iris versicolor:

d= 0.930 d 2 = - 0.658

Sll= 19.143) sal = S1 2 = 9.0356 Se2 =ll.8658
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Figure 1.

Fifty Iris setosa plants (x) and fifty Iris versicolor

plants (o) plotted for sepal width and sepal length.
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We have then to solve two linear equations in two unknowns:

19.1434 .36>1 9.0356 2 = 0.930

9,0356 A + 11.8658 2 = - 0.658
1 2

The roots are easily found to be:

(6) + 0.1167 0X214431 2 m

Any pair of numbers proportional to these would serve as

well.

A simple geometrical interpretation may be given to the

LDF. On figure 1 is drawn the line a Whose slope is

12,
-8- I6 if we use, not the coefficients (6) but the

proportional coefficients

= )l :o.628., 2 _
"1ýi -2 _ _= 0.7776\FXT -)ý+1 2 2

then the LDF

xl xI + 2 x 2

amounts to projecting the points (xlx 2 ) onto the line a.

The line a is so directed that projecting the samples onto

it provides the maximum possible separation of the samples.

We may note in passing that. in this particular example,
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excellent discrimination could be obtained by using the ratio

of sepal width to sepal length; this amounts to a projection

through the origin onto a vertical line. In other situations,

however, the ratio would be a worthless discriminator. The

great virtue of the LDF is that it always projects the samples

in the direction which gives the greatest possible separation.

It is interesting to note that a trait which of itself

provides little or no discrimination, may still be worth

measuring in that it enhances the discriminatory power of

other traits. An exposition of this situation has been given

by Cochran and Bliss (1948).

In his paper, Fisher makes several interesting comments

on the relation of the LDF to other statistical techniques.

On the one hand, the LDF corresponds to an analysis of vari-

ance, with (Y2 1) corresponding to variance between

species and l(ylk " 71)2 + E (7 2k _ y2)2 correspond-
yl) 2

ing to variance within species. On the other hand, the LDF

can be considered as the solution of a regression problem.

Phis is done by giving to each population a different value

of an artificial variable, say z, and then regressing z

on the measurements xl,.'.,x . Through these considerations,

Fisher is led to suggest a test of the hypothesis that the

two populations are in fact identical. This test is identical

with the T2 test proposed by Hotelling in 1931, which has been

discussed in Chapter IV.
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In conclusion, it should be pointed out that Fisher makes

no attempt to justify on probabilistic grounds his definition

of optimum separation, nor his restriction to linear combi-

nations of the measurements. We shall see later, in Chapter

VIII that when the two populations are normal and have the

same covariance matrix, then the LDF has certain optimum

properties. Otherwise it is not optimum.
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CHAPTFR VI

Alication of the Linear Discriminant Function.

Since 1935 the LDF has been applied to an amazing variety

of problems. To indicate the diversity of the published ap-

plications, we present here in tabular form some thirty-two

papers. In each case we give the nature of the groups being

discriminated, and the nature of the observed quantities on

the basis of which the discrimination is effected. We have

purposely omitted from the list papers in which previously

published data is reanalyzed, such as Bartlett (1947), Brown

(1947), Fisher (1938b, 1940), Garrett (1943), Park and Day

(1942), and Penrose (1947).

Not all of the applications in this list are of the

simple type described in Chapter V; some involve modifications

and extensions of the LDF such as are discussed in Chapter

VII. However, in general the applications follow a set pat-

tern3 the nature of the groups and observations are des-

cribed, the LDF is computed, and the significance of the

discrimination is tested. Sometimes there is an enquiry into

the accordance of the data with the assunfptions which under-

lie the LDF, or an appreciation of the relative discriminatory

value of the different variables measured.

It may be noted that the thirty-two papers listed appeared

in twenty-one different periodicals, most of which were not

specifically statistical in nature.
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CHAPTER VII

Some Modifications and Extensions of the Discriminant Function.

During the fifteen years in which the LDF has been in use,

a number of papers have been published which are concerned with

modifications of the LDF, designed to simplify its application,

or with extensions of the LDF to problems somewhat different

from the classification problem which led Fisher to its in-

vention. Some of these results are briefly described in the

present chapter.

If p, the number of traits measured, is small (say 2,

3, or 4.), then there is no special difficulty in solving the

linear equations which determine the LDF, even if no comput-

ing machine is available. 3ut if p is even as large as 6

or 8, the labor involved begins to be practically prohibit-

ive, and with p greater than 10 few persons will care to

tackle the problem aided only by a desk calculator. The

labor involved in compltuting the coefficients Sij increases
2 i

as p , and the labor involved in solving the equations in-

creases about as p(pl).

For this reason there hasb eexý a good deal of effort ex-

pended in seeking out simple and reasonably satisfactory ap-

proximate solutions. There is of course a large general

literature on the solution of linear equations, which we shall
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not consider here. We do however wish to discuss some work

aimed specifically at the equations arising in discriminatory

analysis.

The first suggested approximation seems to have been that

given by Karl Pearson (1926). He pointed out that if the traits

.are all independent, then we may replace the system of p line-

ar equations in p unknowns by p equations each involving

a single unknown:

(1) = i = 1,2,p.-,p.

These equations present no difficulty even if p runs into

hundreds. Of course, the Pearson method is only reasonable

if in fact the correlations between traits are not too large.

Pearson suggested that the traits-to be measured might be

chosen with this in mind.

Beall (19b$) has investigated the accuracy of approxi-

mation (1) and of other approximations for three sets of data,

computing in each case the discriminant ratio obtained. In

one of his examples (data from Travers 1939) the correlations

are mostly small; ranging from - 0.!l to + 0.38, with 10

out of the 15 being between - 0.1 and * 0.1. In this case,

the simple equations (1) give a discriminant ratio of 1.27,

which may be compared with the ratio of 1.31 obtained by us-

ing the correct LDF. But on another example (data from L. S.

Penrose), where the correlations run from 0.31 to 0.57, Beall

finds that (1) yields a discriminant ratio of 0.94, as compared

with the LDF ratio of 1.25,
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These results suggest that if most of the correlations

are small (say between - 0.2 and 0.2) with none of them

very large (say an absolute maximum of 0.6), then the simple

solution (1) may be used without much loss in discrimination.

Another interesting approximate solution has been given

by Jackson (1943). He postulates that all of the correlations

have a conmon value, whose estimate is, say, r, and corre-

spondingly replaces the quantity Si. by the quantity

r fSii Sir

If we divide the ith of the linear equations for the dis-

criminant function coefficients by Sii, and let
di

S Sj, ei = 1 we obtain the system

+ r ý2 + r V3 + + r el

(2)

r rl + r 2+ r + + =e

3 p p

These equations may be readily solved. Summing them, we find

P p

(3) [1 + (p-l)r] e2 i = e
i~l i=l

The j th of equations (2) may be written

P

)(1-r) + r



Combining (3) and (4), we have

(l-r) ej + pr(e.-j)

(5) = " 1 j
(l-r) [1+(p-1)r]

P

where S i - ei. Since we require a solution only up to
i-I

proportionality, w6 may use

(6) S-iJ tj = (l-r) ej + p r(e -e).

There still remains the problem of determining an average

value of r. Jackson and Beall suggestvarious estimates,

which are not very dissimilar. A reasonable one is Jackson's,

given by Beall as:

r z 2 2O)2-

0 iil

where

(n+ z2 ni( 21 +n X2 u2
(1+n2) 1 = 2: - ii 17 (: j-u

j=l j=l1

"n1 " 22
n 1 n2 )U zx i+ 2' x i

j=l J~l

2 nI x p1 2 n2 p 2
(n 1 +n 2 )oz 0 [ -xllj v] + Z I xij v

j=l i=l j - =1
n, P n, P

(nl+n2 )v = nI p n p 2
j=l i=l j=l 1-=

The computations here are not heavy if a desk calculatoi, is

available,
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In all of the examples consIdered by Beal!, the results

obtained in using (6) conpare very favorably with those ob-

tained from the LDFO 'W here the LDF gives discrimination ratios

of 5.03, 1.31t and 1.25v the Jackson method (6) gives 5.00,

1,30, and 1.24, respectively. It should be remarked however,

that in all three exemples the correlations are not widely

divergent.

In using the Jackson technique, one should, where pos-

sible, give the scales of measurement a common orientation,

so that the correlations will at least tend to have the same

sign. Thus, if the measurenients are all related to intelli-

gence, then a high score on all tests used should have the

same meaning--either high intelligence in all cases or low

intelligence in all cases. This result can be obtained by

appropriate choice of sign.

In conclusion, we may state that the problem of approxi-

mate solutions of the LDF equations deserves further study,

both empirical and theoretical. Empirically, more studies

of the kind carried out by Beall would be of. interest. Theo-

retically, one might seek mathematical bounds for the loss

in discriminatory power which results from using various ap-

proximations. Futer -pc,rxirmations might also be studied,

an obvious one being a combination of those of Pearson and

Jackson.

Pending suc.1. stud.les, the experimenter may use the

following rules of thiner-b:



(1) If p is not too large, or if the importance of

the problem and accuracy of the data warrant the

extra work, the accurate LDF should be found ex-

actly.

(2) If the correlations are believed to be mostly

small, the equations (1) should be used.

(3) If the correlations are sizeable but not too

divergent in size, the equations (6) should

be used, after, however, so taking the orien-

tation of scales that the correlations are all

of the same sign.

Theoretically the LDF is designed to solve the problem of

assigning an individual to the proper one of two populations.

However, from the very beginning (Barnard l93•) the technique

has been emnp loyed with more than two populations. It is clear

that a sinrjle linear function will do a good job with more

than two populations only when these populations are collinear

-- that is, when the changes in the means of the p traits,

fromn one population to another, are proportional. As is

customary in applied statistics, an assmnption. which under-

lies a theoretical result need not be exactly satisfied for

the result to be usable. But if the populations are not at
least approximately collinear, useful informi.ation will be lost

if classification is carripd out through uc of the LDF. It

is possible to test the hypothesis of collinearity--tsts have

been proposed by Fisher (1938), Bartlett l9!ob), and Rao (19!tLFb).

The two latter authors reexamriine Zarnard's (1935) data, anid
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find that the linearity assumption is not reasonable in that

case. A visual inspection of 3arnard's data will lead to the

same conclusion. One might almost make it a postulate that

if the samples are large, a test of collinearity will lead

to rejection. This may still not preclude the reasonable-

ness of using the LDF, if the departure from linearity, while

significant, is not large. If it is large, one may employ

more than one discriminant function. This procedure is dis-

cussed by Rao (10, 8 c) and Brown (1947), as well as in the

papers just cited. For a different approach, see Day and

Sandomire (1942).

In the practical applications,, after the LDF has been

found, it is natural to enquire whether some of the vari-

ables contribute enough to the discrimination to warrant

their continuance in further studies. The problem is com~ll-

cated by the fact, mentioned in Chapter V, that the contri-

bution of a variable to the discrimination may be indirect.

The problem of omitting a variable from a discriminant func-

tion is not essentially different from tbat of omitting a

variable from a multiple regression. Aside from empirical

discussions (such as that in Barnard, 1935 and other appli-.

cational papers), various authors have proposed tests of the

additional discriminatory power contributed by a particular

trait or traits. For discussion of the numerical problems

involved in dropping a variate, see Cochran (1938) and

Quenouille (1949a, 1949b).



The LDF has proved to be a valuable tool in fields of'

application other than that for which it was originally in-

tended. There is a tendency in the literature to term any

linear combination of measurement.si in which the coefficients3

are adjusted to achieve some optimum effect, a "'discriminant

function," even though the effect sought is not the specific

discrimination of groups. This extension is not of course

directly pertinent to the problem of classification, and

will be dealt with briefly.

An early example of such an extended use of the LDF is

provided by H. F. Smith (1937), who found that linear func-

tion of several observed characteristics of wheat which corre-

lated most highly with a compound of the corresponding quali-

ties representing economic value. Further examples of ex-

tension of the LDF arise when one seeks to assign scores to

qualitative characters in such a way as to maximize some ef-

fect. Examples of this process may be found in Fisher (192'5

1946, pp 289-295), Fisher (1946), Maung (1941) and Johnson

(195o).

The extended LDF has even been used to effect a gener-

,al attack on problems of multivariate analysis .(Rao, 1948b).

Recall that in Chapter V we introduced the LDF as that

(linear) reduction of -a multivariate problem to the corre-

sponding univaribte problem, which would effect the best

separation of tihe univariate sampleg More generally, "i

performing multIvariate tests of significance, we may seek

that linear reduction of the data which makes greatest the



apparent significance oeing tested. The tests obtained in

this way cannot in general be dealt with through solving

systems of linear equations, but the test -tatistics obtain-

ed are functions of the roots of a determinantal equation of

the form IA - N BI = 0, where A and B are p x p sample,

covariance matrices. The sampling theory of these roots and

of the test statistics which depend on them is very compli-.

cated and will not be dealt with here. In general, the

distributions involved have not been tabled, but large-

sample approximations are available. References to some of

the literature are given in the bibliography. See Anderson

(1946, 1948), Anderson and Girshick (1944), Anderson and

Rubin (1949), Bartlett (1939, 194l, 1947a), Fisher (1938b,

1939, 1940), Girshick (1939), Hsu (1939, 1940, 1941a, 1941b,

1941c, 1941d), Rao (1946b 1948b), and Roy (1939c, 1940a,

194Ob, 1942a, 1942b, 1945, 194 6 a, 1946b). In his lectures

at Columbia, Anderson (1947) has given a thorough treatment

from the likelihood ratio viewpoint. General surveys have

also been made by Bartlett (1947b) and by Tukey.
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CHAPTER VIII

Classification from the Point of View of Probability of Error.

The distinguishing feature of the modern theory of sta-

tistical inference is the focusing of attention on the proba-

bilistic behavior of statistical procedures. The approach of

the linear discriminant function to the classification problem

is essentially intuitive rather than probabilistic: we ask,

what linear combination of the measurements best separates

the samples? The philosophy underlying the LDF is very simi-

lar to that which motivated the development of the analysis

of variance by Fisher in the 1 920's.

The development of a theory of statistical tests, as

distinct from a collection of special examples, may be said

to have begun with the introduction of the notion of types of

error by Neyman and Pearson in 1928 and 1933. Corresponding-

'ly, the initiation of a theoretical attack on the classifi-

cation problem may be said to have begun when the Neyman-

Pearson ideas were adapted to the discriminant function by

Welch in 1939. Welchts results were published in a brief

note, but the ideas involved are of sufficient importance to

warrant a rather full discussion.

Welch considers only the problem of classifying an in-,

dividual into one of two populations, say Tr and IT' and
1 2
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further restricts the problem by °assuzming that the proba-

bility density function of the measured quantities is com-

pletely known within each of the populations. Let

f l (xlx 2 ,'.,Xp) denote the probability density of the ob-

servable quantities X1 ,X 2 ,... ,Xp in 'Wi, and let

f2(xlx2,...,Xp ) be the corresponding density in iI'2"

Welch observes that any method of classifying an indi-

vidual I into one of the two populations on theb asis of

observations on X., X2 ,.'*, Xp , amounts to a partition of

the p-dimensional "sample space" of the X's into two ex-

haustive and mutually exclusive regions, say R1  and R2,

with the rule that I will be assigned to 'I if the random

point with coordinates (Xl, X2 ,''" ,Xp) falls into Rl, and

will be assigned to I2 if (XI, X2 1 .'., Xp) falls into R2.
2R2

The choice of a rule for classification or discrimination is

thus equivalent to the choice of a partitioning of the sample

space into the regions R1  and R2 .

Welch further proposes a criterion on the basis of which

the various possible partitions may be compared as to their

desirability. He suggests that a partition (or rule for

classifying I) be judged on the basis of the probabilities of

misclassification which arise when the rule is employed.

Two forms of the problem are treated. First, Welch sup-

poses that there exist a priori probabilities that I comes

from the two populations, say probability p1  that I does

in fact belong to l' and probability P2  that I belongs to
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I2" Here of course P1 + P 2 = 1. Using the method of Bayes,

we may compute the a posteriori probabilities that I belongs

to T•T and to I2" These values are
12

•P l f 1 (x lx 2i''sxp ) + P 2 f 2 (xlx 2 ,.--,xp)

P2 f2 (xlsx2''''OX p)

Plfl(xlX2,...,Xp) + P2 f 2 (xl,x 2 0...,xp)

respectively. We may then assign I to that population whose

I posteriori probability is greatest. This procedure coin-

cides with that which is obtained if we compute the likelihood

ratio
fl1(x i'x2'**~

f 2 (x lx 2 ,''',xp

and assign I to r1 if x > P2, otherwise assigning I to1 Pl

"112, Welch asserts (as is easily shown) that these equivalent

rules lead to the minimum possible probability of misclassifi-

cation.

The solution obtained by Welch under the assumption of

the existence of a priori probabilities had an historically

interesting precursor. In 1898, Heincke was led, in his study

of the races and varieties of herring in the North Sea, to

attempt a probabilistic solution of the species problem.

Heincke noticed that whereas each of several observable traits

of the herring would provide some information as to the variety,
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none of these traits considered alone would enable him to make

a sufficiently accurate classification. He thus sought a

method which would enable him to combine-the information ob-

tained from several observed traits. The distinguishing

features of his work were, first, that the variables he con-

sidered were primarily discrete instead bf continuous, and

secondly, that he made the assumption of equal a priori proba-

bilities. That is, if there were three possible varieties

from which a given herring might have come, Heincke assumed

that there was a 1/3 chance that the herring came from each.

Heincke's principle of classification, granting his assumption,

has a distinctly modern sound: "Das Individ~ium muss schliess-

lich derjenigen Rasse zugezahlt werden, fur die das Produkt

der Wahrscheinlichkeiten aller Eigenschaften ein Maximum ist."

Heineckets assumption of equal a priori probabilities

corresponds to the ancient "principle of insufficient reason."

However, from the frequency interpretation of probability here

adopted, this ass-mption would be reasonable only if, say, the

herring had been drawn at random from a master population in

which the three varieties were mixed in equal proportions. In

general, the validity of the assumption of a priori probabili-

ties seems to be restricted in applications. An interesting

example in which there existed known a priori probabilities

was considered by Martin (1936). Here, skulls and jawbones

were recovered from a large grave, but in the recovery pro-

cess the jawbones became disassociated from the skulls. In

the sexing of the material, it is considerably easier to attach
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the correct sex to a skull than to a jawbone. Thus (con-

siderably simplifying the problem for purposes of illustration)

we might say that we know the proportion of male and female

jawbones, and can use these proportions as known a priori proba-

bilities. The example is exceptional, however, and on the

whole a solution of the problem which does not involve the

assumption of known a priori probabilities is more frequent-

ly needed. We may remark that it is. easy to show that a

formulation in which there are assumed to exist a priori proba-

bilities which are however unknown, does not essentially differ

from a formulation in which no a priori probabilities are as-

sumed to exist. (In the language of Wald's theory, this amounts

to saying that the class of Bayes solutions is complete. This

point is discussed further in ChapterIX.)

Heincke's work was the stimulus of a line of research on

the European continent which seems to have been rather inde-

pendent of the researches which are the main subject of this

paper. Of this European work we may mention that of Zarapkin

(1934), Kozminski (1936), and Cavalli (194)5). Zarapkin modi-

fied the Heincke method, and Cavalli considered the relative

merits of the methods of Heincke and Zarapkin. These re-

searches do not seem to have contributed much to the main

stream of discriminatory analysis.

The biological problem of species, has, naturally, been

the stimulus of a great deal of work on the classification

problem. We have already seen that Karl Pearson began with

the problem of human racial classification, and Fisher's
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first paper on the discriminant function was concerned with

taxonomy. Heincke, Kozminski, Zarapkin, and Cavalli were

similarly motivated. In this connection there is a wealth

of material on mathematical definition of species, mostly

not of a probabilistic nature. See, for instance, Joyce

(1912), where an idea of Soper's is used; Williams (1929);

and Ginsburg (1938), who uses the notion of probability of

misclassification to define degrees of biological dissimi-

larity.

Welch also considers a second form of the probl~m, in

which no a priori probabilities are postulated. Here there

are two probabilities of misclassification to be considered:

(1) The probability of classifying I into IT 2

when in fact I belongs to TY ,

(2) The probability of classifying I into V11
when in fact I belongs to IT2

Let us denote these probabilities by P(R 2 1 Wi) and P(R 1 TI2 ),

respectively. Welch states (as again is easily shown) that

to minimize these two probabilities of misclassification, sub-

ject to the condition that they are equal, one again employs

a partitioning of the likelihood ratio kind. The region R

consists of those points for which k> k, the value of k

being chosen so that P(R Iily) 2 P(R 2O1 ).

The reader acquainted with the Neyman-Pearson theory will

recognize the foregoing as a slight modification of the fact

that the most powerful test of a simple hypothesis against a

simple alternative is that based on the likelihood ratio
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principle (Neyman and Pearson, 1933a). The only novelty in

Welch's work is that the two types of error are treated sym-

metrically, whereas in the usual formulation of the hypothesis

testing problem, the two types of error are treated differ-

ently: we place a preassigned limit (called the level of

significance) on the probability of one error, and then seek

to minimize the probability of the other error. Symmetri-

zation of the problem does not alter, its essential mathemati-

cal nature.

Welch concludes his brief note by considering an example.

He supposes that X1 , X2 ,,'',Xp heve a joint normal distri-

bution with a known covariance matrix (I T11 which is the same

in the two populations, the two populations thus differing

only in the (known) expectations. Formally,

I pPd iJ~xeM
2, 2: -(x-ik (j- Jk)

f k ( X l 'X 2 " ' ' 'p X p ) -- e

k = l, 2.

When we form the likelihood ratio the constant factors cancel.

and the exponential factors combine to give

-[iZ jI 6iJ{(xi-ei )(xj- jl)- (xi-ei 2 )(xj-@j2)})i j=l1

Thus ) is a monotone function of the double sum in the

exponent, which may oe simplified. We obtain

P p P p

log) =• I iJ(@iljjl-Gi292) + 2 J ciJ(@6 l-Q) x
i=l j=l i=l j=J
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The first term on the right is independent of the sample point,

so ) is a monotone function of the second term. But the

latter is that to which Fisherts LDF simplifies if the popu-

lation expectations and covariance matrix are known. Thus

Welchts work puts a theoretical basis under the LDF, at least

in a special case.

It is important to observe the essential nature of the

assumption that the two populations have the same covariance

matrix. Without this assumption, the likelihood ratio does

not simplify as much as before, and we find that is a'

monotone function of a quadratic function of the sample values.

We are then led to a quadratic rather than to a linear dis-

criminant function. Smith (1947) has introduced and employed

these quadratic discriminators. The theory of the quadratic

discriminant functions has not yet been extensively developed.

From the applicational point of view, Welch's results

are obtained under rather severe restrictions. Two of these

were removed in 1945 by von Mises. Von Mises considered the

problem of classifying the individual into one of several popu-

lations, say l'W 7'T 2P..', TYk P instead of only two; and fur-

ther, he was able to remove the rather undesirable restriction,

imposed ab initio by Welch, that the two probabilities of

misclassification should be equal. If there are k popu-

lations, then the numiber of possible errors of classification

is' k(k-l), since the individual may belong to any of the k

populations, and then may be misclassified into any of the

k-l remaining populations. Thus, the two population problem
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gives 1.2 = 2 errors, the three population problem gives

2-3 = 6 errors, etc. The problem thus becomes very rapidly

more complicated with increasing k. We can effect a con-

siderable simplification if we focus attention not on the

misclassifications but on the correct classification4, for

there are only k of the latter. In the case k = 2, we

get the same results whether we consider misclassifications

or correct classifications, since there are two of each and

their probabilities are complementary by pairs. In the

general problem, however, a real simplification is implied

by considering the correct classifications. This amounts to

treating all errors alike for a given true population, but

permitting the errors to be considered differently as the

true population is changed. We may extend our former no-

tation, letting the sample space be partitioned into k

regions Rl R2,''', Rk , with the rule that I shall be as-

signed to 1rTi if and only if the sample point x=(Xlx 2 ,...,Xp)

falls into Ri. Again, P(Rij'W) will denote the probability

that I will be assigned to TV1, given that I belongs to

Von Mises formulated the problem in the following terms:

what classification procedure will maximize the minimum of the

probabilities P(RiIjri) of correct classification? (It may

be noted that this formulation of the problem amounts to a

completely symmetric way of viewing the errors..) As did

Welch, von Mises considers that the random variables to be

observed have, within each of the k populations, known
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density functions, which we may denote by fi(xl9x2 ,...,xp),

i = 1,2,--.,k. Using the nfeUhods of the calculus of vari-

atIons, von Mises obtains the results in the following terms:

"The partition of the x-space that solves our problem is

characterized by two properties: (1) for all k regions Ri

the value of P(R11Yi) is the same; (2) along the border be-

tween R. and R. the ratio fi(x)/fj(x) is constant." Thus,

Welch's assumption of equal probabilities of incorrect (and

hence of correct) classification comes out as a consequence

in von Mises work, and again the optimum partition of the

sample space is that given by the ratio of the likelihoods.

The reader who is acquainted with recent developments in

the theory of statistical decision functions will have recog-

nized that von Mises' formulation of the problem (i.e., the

maximization of the minimum probability of correct classifi-

cation) is an illustration of the minimax principle. This

principle, which seems to have been introduced into the theory

of statistics by Neyman and Pearson in 1933, has been the sub-.

ject of a great deal of modern development primarily by Abraham

Wald. ChapterLM is devoted to the application of Waldts ideas

to the classification problem.

The main practical disadvantage of the work of Welch and

von Mises lies in the assutmption made by these writers that

the parameters of the normal distributions are all known. The

Welch test statistic

p p

i=5(Ej1 - Ej2) xi
i=l j=l



involves all of the population parameters. In the great

majority of applicational problems we do not know the values

of 6ij, @ejl and e2, but must rely on estimates of these

quantities obtained from samples.

The problem of the estimation of the normal parameters

from sample values arises in two main forms:

(1) there are available samples of known origin

from TI and IT,

(2) the samples are intermingled, so that we do

not know for any individual in the sample the

true population of origin.

The second form of the problem is of course much harder than

the first. An approach to its solution, in the case of uni-

variate normal samples, was made by Karl Pearson in 1894 by

means of his method of moments. This technique has not work-

ed well in practice (see Martin 1936) and is not theoretically

efficient. Fisher t s maximum likelihood method provides a

theoretically better solution. However, the fact is that it

is extremely difficult to decompose a mixture of two nor-mal
populations unless the populations are very well separated,

so that the sample has two clear modes.

Rao (1948) has considered a problem of this kind. He

considers the observed frequency distribution of heights of

)_54 plants, supposed to be of two different types but botani-

cally indistinguishable. Assuming equal variances for the

two types, Rao estimates that the sample is drawn from a com-

pound population obtained by mixing in proportions 57%and
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43/two normal populations whose means differ by about 1 1/2

standard deviations. He decides, "these estimates can be

safely used for interpreting differences in heights," and

checks his goodness of fit with a chi-square of 1.30 on 6

degrees of freedom.

The trickiness of problems of this kind is made clear

by the following observation, due to Dr. Fix: if we fit a

single normal distribution to the same data, we may obtain a

fit whose chi-square is 0.68 with 8 degrees of freedom! Thus

we obtain a better fit with the simpler model. This fact

makes one doubt that there is much safety in Rao's interpre-

tation of height differences, and points out that there is

little hope of reliable results in resolving mixtures of

normal populations unless the samples are extremely large

(in which case departure from exact normality would cause

trouble) or unless the population means are separated by a

good deal more than 1 1/2 standard deviations.

Fortunately, samples of known origin are usually avail-

able so that the problem of estimating the population parameters

arises in its simpler form. The obvious modification of the

Welch test statistic

P a (E) - eJ 2 ) xi

i=l j=l

is to replace the unknown parameters by their estimates. Thts

is in fact what the LDF does; it corresponds to the extension

of the likelihood ratio principle to the composite hypothesis
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case, in which one considers the ratio of maximized likeli-

hoods.

In 1944j, Wald considered the problem of finding the dis-

tribution of a statistic obtained in the manner just suggested.
ii

If s is the estimate for 6ij so that sij is the usual

unbiased estimate for dij obtained froin the pooled sample

data, if Ki and Ti represent the arithmetic means of the

sample measurements on the ith trait in the two samples re-

spectively, and if (zlz 2 ,....zp) represent the measure-

ments on the individual I to be classified, then Wald's

statistic is

p p

U =E E si zi(Yj -zj.

i=l j=l

The relation of U to the LDF is clear. Wald gives the large

sample dis tribution of U (this being essentially the approach

of Fisher in 1936) and investigates the exact distribution of

U. His results are not simple, and are not in a form avail-

able for applicational use. Further work on the distribution

needs to be done to make Wald t s results more readily available

"ýfor applications. In this connection, see Harter (1950).

A lengthy paper on the classification problem was pub-

lished by Rao in 19[8. The paper consists of three parts,

the second and third of which are concerned with the problem

of arranging a system of populations into a hierarchial order,

and are hence not directly pertinent to discriminatory analy-

sis. In the first part, Rao reobtains the 1915 results of
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von Mises, and extends them in several ways. He develops

further his suggestion, introduced in 1947, that the classifi-

cation problem be modified to permit-classification not to

be made in certain cases. Thus, the sample space is partition-

ed into k + 1 parts, the usual classification regions

R1 , R2 ,..., Rk, and a remaining part R0 with the rule

that if the sample point falls into R0 no decision will be

reached. It is of course true that in many applicational

situations circumstances compel a decision to be reached; but

there are problems in which the contrary is true, and for

these cases the Rao method permits the construction of a

classification rule with preassigned limits on all of the

probabilities of misclassification.

Rao extends to several populations the Welch solution of

the classification problem with known a priori probabilities.

He adopts the idea of Heincke that if nothing is known about

the a priori probabilities, they may be assumed to exist and

all to be equal. Rao gives explicit statements of the like-

lihood principle in a variety of special cases.

Another recent work of interest is the 1949 paper of

Hoel and Peterson. These authors presume the existence of

a priori probabilities, and first obtain the same extension

of 'Welch's work to k populations which was obtained by Rao.

They then suppose that the a priori probabilities, while still

existing, are not known but may be estimated from a sample.

There may also be unknown parameters in the densities

fi(x 1 x2$ ',x ). A set of estimators will be called opti-
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mum if it maximizes the probability of correct classification.

The authors then consider conditions under which the maximtnm

likelihood estimates will be asymptotically optimum in this

sense,

The Hoel-Peterson paper suggests the following question,

which seems to be interesting. A more general formulation of

the definition of optimum would be as follows: that classifi-

cation procedure is optimum which maximizes the probability

of correct classification. We may then ask, does .this defi-

nition coincide with that of Hoel and Peterson--that is, can

best use of the sample information be made by first estimat-

ing the a priori probabilities and parameter values, and then

proceeding to classify as if these estimates were known to be

correct? An answer to this question should be possible, using

the methods of the general theory of statistical decision

functions.

Problems which are essentially classificatory arise con-

stantly in the field of medical diagnosis: the physician

must assign the patient to one of several categories, which

may be taken to correspond to the state of health and to the

various diseases under consideration, or to various classifi-

cations of severity of a disease. Not much work seems to

have been done toward the construction of a probabilistic

theory for diagnosis, perhaps through reluctance to treat

diagnosis as a chance phenomenon. A beginning was made re-

cently by Neyman (19!7), who proposed a simple probabilistic

model which will account for observed variation in X-ray diag-
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nosis for tuberculosis. Cniang and Hodges (1948) have con-

tinued this line of work. An interesting possibility is that

sequential diagnostic schemes might be considered proba-

bilistically. Sobel has initiated an attack on sequential

solutions of the classification problem in his doctoral dis-

sertation at Columbia University.

Recently Birnbaum and Chapman have considered a problem

which is essentially discriminatory. Suppose we wish to se-

lect individuals who have a high value of a quantity Y

which is not directly observable, but which is correlated with

observable quantities X1 , X2 , "'', X . Birnbaum and Chapman

show that if Xl' X2 , ***, Xp, Y have a (p+l)-variate nor-

mal distribution, selection by means of an appropriate linear

combination of the X's is optimum in various senses. For

example, such a "linear truncation" will maximize the con-

ditional expectation of Y among those selected, the freauency

of selection being fixed.

It is disturbing to the theoretical statistician that the

classification of an individual into a category may be preceded

by other statistical inferences, often carried out with the

same data. It seems clear that these preliminary inferences

will alter in a serious way the theoretical performance of the

discrimination itself. There may even be a whole chain of

consecutive inferences. To illustrate, suppose that a sta-

tistician is given a set of data consisting of readings on a

new serological test. He may first test the homogeneity of

the data--is there evidence that the data come from more than



one population? If he decides that more than one population

is present, he must then decide how many populations there

are. At the same time he tries to formulate a probabilistic

model for the observations, consisting of a form of proba-

bility distribution for. each population. These distributions

may contain parameters, which must then be estimated. And

finally the sampled individuals may be classified. If it is

desirable that theory correspond to reality, then there is

need for an inclusive theory which will allow for these

multi-stage decision procedures.

A beginning has been made by the Hoel-Peterson paper dis-

cussed earlier, where the estimation and classification s tages

are analyzed together.- In another interesting paper Paulson

(1949) considers the problem of grouping individuals into a

"superior" group and an "inferior" group, or else of deciding

that all of the individuals are "neutral." This amounts to

a two-stage procedure: first we decide whether there are one

or two populations represented; and if we decide there are

two populations, we proceed to classify the individuals into

them. Paulson proposes an intuitively reasonable procedure

and considers its probabilistic behavior in the case of normal

observations of known variance. His work opens up many in-

teresting and important problems.
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CHAPTER IX

Risk and Minimax Ideas.

We have seen in Chapter VIII that von Mises (1945) de-

fined the optimum procedure for classification into one of

several populations as that procedure for which the minimum

probability of correct classification is maximized. This

formulation marks the introduction of minimax ideas into

discriminatory analysis. It is the purpose of the present

chapter to describe some recent work in this direction.

The risk and minimaax notions seem to have been intro-

duced into statistical literature by Neyman and Pearson (1933b).

These authors were concerned with testing hypotheses, but as

we have seen, hypothesis testing is analogous to the two-

population classification problem, and the generalization to

k populations presents no difficulty. The specific ex-

tension. of the risk and minimax notions to the k-population

classification problem has been carried out by Rao (1947c,

194 8 c), Brown (1948, l9li9), and Girshick (1949). We shall

here present the notions directly in the extended form.

As was mentioned earlier, in classifying an individual

into one of k populations, there are k(k-1) distinct pos-

sible errors of classification. The complexity of analysis

required for dealing with a large number of different kinds



of error is greatly reduced if we can in some way gauge the

seriousness of all of these ,errors on a common scale. For

example, we may be able to attach an economic value to ti-e

loss, say wi., 'v'iich is incurred when an individual who.1n

fact belongs to Vi is assigned to IT. Presumably

"wIn = 0, since no error is committed when an individual be-

longing to 'i is assigned to 'It, but the theory is flexible

enough to permit wii * 0 and to allow the wij to be either

positive or negative if this is desirable. Here, a negative

"loss" would correspond to a gain. There will be k2 of the

quantities wij which may be conveniently presented as a

k x k matrix:

W2 . lk

w2 1  w22 " 2k

Wkl Wk2  Wkk

This matrix is known as the "loss matrix," and its specifi-

cation is not the task of the statistician but depends on the

use to be made of the classification after it has been ef-

fected. (We may remark that W corresponds to the "pay-off

matrix" of the theory of games.)

Certain special cases of W are of interest. If we

equate the diagonal terms w1 1 , w2 2 ,''' Wkk to zero, and

give the remaining terms a common (positive) value which we
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may take to be l, the formulation reduces to that considered

in Chapter VIII: no attention is paid to correct classifi-

cations, and all misclassifications are treated alike, (von

Mises, 1945). If k =.2, and the diagonal terms are 0, we

obtain the matrix

0 w12

w2 1  0

We may think of and 1 as giving the relative im-

portance of the two types of error in a test of a statisti-

cal hypothesis. An interesting illustration of this situation,

applied to an Air Force problem, has been given by Berkson

(1947).

It should be emphasized that, in spite of the great

flexibility of the present approach, it cannot be applied

to all problems. There are situations in which the different

errors are qualitatively so different that a common scale can-

not be constructed for them, or an asy'ruietry of approach may

be compelled by the conditions of the problem+ We may need

instead to adopt the typical method of hypothesis te-ating, and

set preassigned bounds to the probabilities of certain of the

errors. A combination of the loss and error-bound methods

may be needed for some problems.

The simplification inherent in the loss approach is at-

tained by the introduction of the idea of risk. The risk is

simply the expected loss; that is, the average loss which may
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be expected in long-run use of the classification procedure

being considered. Recalling that any rule for classifying an

individual into one of k populations on the basis of certain

observations X1 , X2 ,' ', X corresponds to a partitioning

of the p-dimensional sample space of the X's into k regions

R1 , R2 00,9 Rk , let us denote this partitioning by R. The

risk which results from using R if I in fact belongs to

11i is then

k

(I) ri(R) = wij P(RjIll~i).

J=l

If a priori probabilities pIl p 2 ''''' Pk exist, there will

be an unconditional risk

k

r(R) = Pi ri(R).

i=l

We may reasonably take our objective to be the finding

of that classification rule R which minimizes the risk. In

the case of a priori probabilities, this objective assumes a

very simple form. We seek that partition R of the sample

space for which

k k
r (R) = px wij P(Rjliri)

i=l J=l

' k [kP(Ji Pi wij P(R jIT i)]
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is minimum. The solution of this problem is not very dif-

ferent mathematically from that dealt with by Welch (1939).

If there exist known probability density functions

fi(xi, "'', Xp) of the observable variables, for each of

the populations VI, we simply compute the k quantities

k

(2) cj = wij Pi fi(xi'''''xp)p j =
i =!

and assign I to that population IT. for which the corre-3

sponding quantity c is least. Intuitively, a is pro-

portional to the a posteriori risk sustained when I is

assigned to I and we assign I to that population for

which the a posteriori risk is least.

If no a priori probabilities are assumed, or if nothing

is known about them, the problem is more complicated. The

individual I may belong to any one of the k populations,

and we need to consider all k of the conditional risks (1).

A natural extension of the approach of von Mises (1945) would

be the following: find that partition R for which the maxi-

mum of the conditional risks is minimum. Such a partition is

termed a minimax partition. The adoption of this definition

of optimum corresponds to a pessimistic viewpoint: we don't

know anything about the true population of I, and should

guard ourselves against the worst possibility--the performance

of a classification rule being judged by the risk under the

least favorable contingency.
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A simplification of the problems which does not lead to

the specification of a Lunique procedure, but which clarifies

the po• sbilities• is effected if we introduce the no'tions

of admissibility and the complete class. A partition R is

said to be inadmissible if there exists some other partition

S for which none of the conditional risks are greater than

they are for R:

r. = r( (R)• i = l

and such that at least one of the conditional risks is less

ri{s) < rj(R) for some j =1,2p-°°ek,

It is clear that we should not want to use an inadmissible

classifiocation rulep since there is available an alternative

rule whtIch cannot give higher risk and may give lower risk,

If a rule is not inadmissible, it is called admissible, and

a collection of rules which contains all admissible rules is

called a complete class. From the risk point of view9 we

need never considar procedures which do not belong to a com-ý

plete class. L•..•' ýcation of complete class was introduced in
ing

connection w••th bhpothesis test/by Lehmann (1947), and was ex-

tended by Wald (`947)> The concepts of lossp risk, minimax

procedurep 1Tdr0 s:ibility, and complete class play a funda.me.. e

al role in the ,•odern theory of statistical decision functic.s

developed by Ab'a•ham Wald (1950)o Various theorems relating



to these conceptsp for the special case of the k-pop.lation

classifiation problems may be deduced from general theorems

of Wald (1O0) •, or may be obtained. i :.'simply for the special

case. We shall merely statr some of the m.an results,

ENven tf there are no a Prrior. I :obabiiitiesp we can. in-

troduce them artificially, and consider the class of all

classif;,ation rules obtainable from. (2) when we permit

n P&to a.e .ll po.s.,lse ts of values, The

class of ruloe so obtained is knowni as the class of Bayes

solutions, an? these constitute a compieIte class. Under

cortai-ictions ore can show that all of the Bayes rules

are a dmines il The miinima rule tun•. u.t to be the Bayes

rule fop which the risks are al equal (the so-called hoon-

stant risk TBayes solution.")

The result of these theo•e•is to give a theoretical

solution of the optimum classification problemp provided (i)

the loss matrix W can be specified in a satisfactory wayo

and (ii) the distribution of the observable variables is

completely known within each p_ & on,; The same coiments

could be made her e that were made abo.t the von Mises re-

suits in Chapter VITIi In fact, the present result special.-

iz•as to the von Mises result Ao T.. is eppropriately chosen,,

Even if provisos (i) and (ii) hold, there remains the

pra...t. • problei of the d. ce:mnation of the regions

Ri_ One may proceed by trial an? er• ,r; chosing values for

p., i aP" p1  arbi tra. i1.yp cva.,1ati- the corresponding

risks, and. then correcting tha p28 to bring. the riks
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closer to equality. I'f k = 2, it is usually not hard to

obtain the explicit -minimax procedure, but with k 3

there may already be practical difficulties. There is need

for more work on useful approximations and shortcuts in find-

ing the minimax regions when k • 3. A start has been made

by Rao (1948c). The problems which arise are rather differ-

ent, according as the distributions f are discrete or

continuous, and both cases deserve investigation.
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